AQRP Monthly Technical Report

PROJECT TITLE	Spatial and temporal resolution of primary and secondary particulate matter in Houston during DISCOVER-AQ	PROJECT #	14-029
PROJECT PARTICIPANTS	Rebecca J. Sheesley Sascha Usenko	DATE SUBMITTED	11/8/2014
REPORTING PERIOD	From: October 1, 2014 To: October 31, 2014	REPORT #	3

A Financial Status Report (FSR) and Invoice will be submitted separately from each of the Project Participants reflecting charges for this Reporting Period. I understand that the FSR and Invoice are due to the AQRP by the 15th of the month following the reporting period shown above.

Detailed Accomplishments by Task

In October 2014, we focused on the method validation for the new, combined high pressure liquid extraction (HPLE) and gas chromatography mass spectrometry (GCMS) method for organic tracers and contaminants (see Table 1). Method validation included analysis of National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) for Urban Dust and House Dust (1649b and 2585, respectively). In addition, method detection limit studies were completed (n=7) for organic contaminants and is in progress for organic tracers. Manuscript is in preparation for submitting to *Journal of Chromatography A* in December 2014. Table 1 is not ready for distribution/public dissemination at this point.

In addition, we have fully cataloged and established a protocol for filter sharing and documenting the analysis of each filter collected during DISCOVER-AQ in Houston 2013.

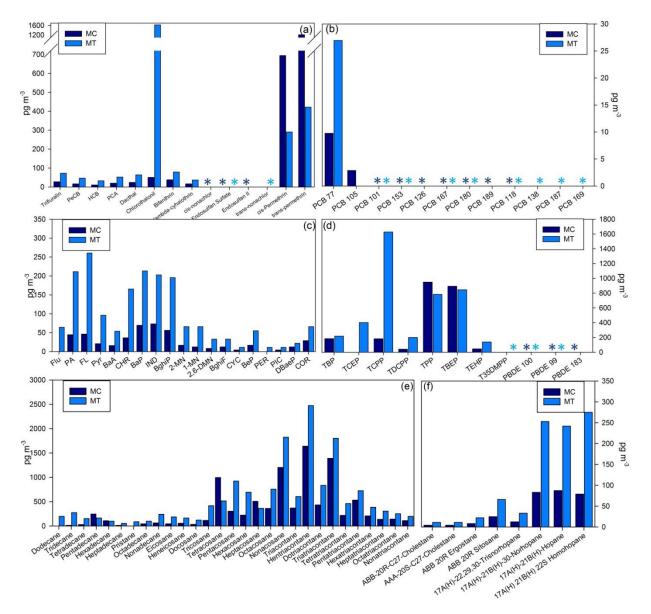
Participated in analysis preparation with DISCOVER-AQ aerosol focus group collaborators (grants 14-024 and 14-009).

Discussion and preparation of filter samples for ion chromatography analysis (14-024).

Preliminary Analysis

Table 1: Breakdown of Target Analyte Analysis by which GC-MS is used. ^aThese compounds co-elute and are subsequently quantitated together. ^bThese were analyzed on GC-EI-MS. ^cA fourth ion (third qualifier) was used for the identification of these coeluting compounds. ^dThis compound was analyzed for in SRM 1649b. ^eThis compound was analyzed for in SRM 2585. ^fReported concentrations were combined and error was propagated accordingly. ^gThese compounds were quantified separate from other PAHs (with alkanes, hopanes, and steranes). ^hInformational values are not given with associated error. Yellow indicates preliminary data.

				GC-ECNI-MS	5					
			Polybromi	nated Diphenyl E	thers (PBDEs)					
Compound	<u>RT</u> (min)	<u>Ions</u> (m/z)	<u>Quantitation</u> <u>Standard</u>	SRMs 1649b and 2585 Detected Reported % Error			<u>Reproducibility</u> study (%) n=7	<u>MDL</u> (ppb)	<u>Linear</u> Range (ppb)	<u>R²</u>
PBDE 15	22.83	81,79	¹³ C ₁₂ -PBDE 77				77.3 ± 7.8	10.3	4.9 - 1500	0.997
PBDE 17 ^e	27.50	79,161,81	¹³ C ₁₂ -PBDE 77	<mdl< td=""><td>11.5 ± 1.2</td><td></td><td>70.6 ± 4.5</td><td>8.72</td><td>4.9 - 1500</td><td>0.999</td></mdl<>	11.5 ± 1.2		70.6 ± 4.5	8.72	4.9 - 1500	0.999
PBDE 28+33 ^e	28.48	79,161,163	¹³ C ₁₂ -PBDE 77	23.1 ± 0.5	46.9 ± 4.4	51%	69.9 ± 3.4	8.43	4.9 - 1500	0.999
PBDE 75 ^e	32.59	81,79,161	¹³ C ₁₂ -PBDE 77	<mdl< td=""><td>10.1 ± 2.0</td><td></td><td>77.8 ± 1.9</td><td>3.15</td><td>4.9 - 1500</td><td>0.999</td></mdl<>	10.1 ± 2.0		77.8 ± 1.9	3.15	4.9 - 1500	0.999
PBDE 49 ^e	33.04	81,79,161	¹³ C ₁₂ -PBDE 77	58.7 ± 2.4	53.5 ± 4.2	10%	71.6 ± 2.1	3.37	4.9 - 1500	0.994
PBDE 47 ^e	33.92	79,161,163	¹³ C ₁₂ -PBDE 77	477 ± 17	497 ± 46	4%	79.1 ± 2.6	2.47	4.9 - 1500	0.999
PBDE 66 ^e	34.77	79,81,161	¹³ C ₁₂ -PBDE 77	32.8 ± 1.6	29.5 ± 6.2	11%	84.6 ± 0.8	1.67	4.9 - 1500	0.999
¹³ C ₁₂ -PBDE 77	36.05	81,79,498	¹³ C ₁₂ -PCB 138				88.3 ± 5.7			
PBDE 100 ^e	37.76	79,161,163	¹³ C ₁₂ -PBDE 126	177 ± 14	145 ± 11	22%	89.8 ± 1.8	2.67	4.9 - 1500	0.999
PBDE 119 ^e	38.27	79,81,161	¹³ C ₁₂ -PBDE 126	<mdl< td=""><td><0.2^h</td><td></td><td>95.4 ± 2.5</td><td>2.93</td><td>4.9 - 1500</td><td>0.998</td></mdl<>	<0.2 ^h		95.4 ± 2.5	2.93	4.9 - 1500	0.998
PBDE 99 ^e	39.00	79,161,562	¹³ C ₁₂ -PBDE 126	1130 ± 95	892 ± 53	27%	93.3 ± 2.3	1.87	4.9 - 1500	0.998
PBDE 85+155 ^{c,e,f}	41.06	81,79,160	¹³ C ₁₂ -PBDE 126	35.6 ± 2.3	47.7 ± 1.6	25%	96.0 ± 2.7	2.68	4.9 - 1500	0.999
¹³ C ₁₂ -PBDE 126	41.50	79,81,576	¹³ C ₁₂ -PCB 138				88.9 ± 6.6			
PBDE 154 ^e	41.89	79,161,562	¹³ C ₁₂ -PBDE 126	125 ± 7	83.5 ± 2.0	50%	85.0 ± 4.3	7.58	4.9 - 1500	0.999
PBDE 153 ^{a,e}	43.37	79,161,564	¹³ C ₁₂ -PBDE 126	141 ± 11	119 ± 1	18%	90.3 ± 3.0	3.26	4.9 - 1500	0.999
PBDE 183 ^e	46.92	79,161,564	¹³ C ₁₂ -PBDE 126	61.5 ± 2.5	43.0 ± 3.5	43%	92.6 ± 2.2	2.27	4.9 - 1500	0.979
			Polych	lorinated Biphen	yls (PCBs)					
PCB 101 ^d	25.22	326,328,324	¹³ C ₁₂ -PCB 77	<mdl< td=""><td>55.1 ± 5.1</td><td></td><td>77.1 ± 4.1</td><td>6.69</td><td>4.9 - 1500</td><td>0.998</td></mdl<>	55.1 ± 5.1		77.1 ± 4.1	6.69	4.9 - 1500	0.998
PCB 81 ^d	26.61	292,290,294	¹³ C ₁₂ -PCB 77	<mdl< td=""><td>13.5 ± 0.7</td><td></td><td>89.7 ± 1.4</td><td>1.74</td><td>4.9 - 1500</td><td>0.999</td></mdl<>	13.5 ± 0.7		89.7 ± 1.4	1.74	4.9 - 1500	0.999
PCB 110 ^d	26.88	326,324,328	¹³ C ₁₂ -PCB 77	<mdl< td=""><td>32.9 ± 3.0</td><td></td><td>85.4 ± 1.6</td><td>4.57</td><td>4.9 - 1500</td><td>0.999</td></mdl<>	32.9 ± 3.0		85.4 ± 1.6	4.57	4.9 - 1500	0.999
¹³ C ₁₂ -PCB 77	27.09	304,302,306	¹³ C ₁₂ -PCB 138				73.7 ± 8.6			
PCB 77	27.09	292,290,294	¹³ C ₁₂ -PCB 77				92.5 ± 1.7	2.13	4.9 - 1500	0.998
PCB 123	28.03	326,324,328	¹³ C ₁₂ -PCB 77				89.5 ± 3.0	2.88	4.9 - 1500	0.999
PCB 118 ^d	28.21	326,328,324	¹³ C ₁₂ -PCB 77	<mdl< td=""><td>23.8 ± 4.0</td><td></td><td>91.9 ± 4.1</td><td>3.24</td><td>4.9 - 1500</td><td>0.999</td></mdl<>	23.8 ± 4.0		91.9 ± 4.1	3.24	4.9 - 1500	0.999
PCB 114	28.67	326,324,328	¹³ C ₁₂ -PCB 77				98.8 ± 3.2	2.00	4.9 - 1500	0.999
PCB 153 ^d	29.22	360,362,358	¹³ C ₁₂ -PCB 126	67.0 ± 5.8	74.8 ± 1.0	10%	75.7 ± 2.4	3.50	4.9 - 1500	0.994
PCB 105 ^d	29.41	326,324	¹³ C ₁₂ -PCB 126	<mdl< td=""><td>9.7 ± 1.0</td><td></td><td>71.9 ± 2.3</td><td>3.86</td><td>4.9 - 1500</td><td>0.995</td></mdl<>	9.7 ± 1.0		71.9 ± 2.3	3.86	4.9 - 1500	0.995
¹³ C ₁₂ -PCB 138	30.4	372,374,370	-IS-							
PCB 138 ^d	30.43	360,362,358	¹³ C ₁₂ -PCB 126	54.0 ± 4.9	59.0 ± 14.0	8%	76.8 ± 1.8	2.70	4.9 - 1500	0.993


130 DOD 100	21 66	220 240 225	130 DOD 100				01.0			
¹³ C ₁₂ -PCB 126	31.00	, ,	¹³ C ₁₂ -PCB 138				81.2 ± 6.5			
PCB 126	31.00		¹³ C ₁₂ -PCB 126				89.5 ± 1.6	2.17	4.9 - 1500	0.998
PCB 187 ^d	31.12		¹³ C ₁₂ -PCB 126	36.5 ± 1.7	38.5 ± 2.9	5%	88.0 ± 1.9	2.27	4.9 - 1500	0.997
PCB 167	31.85		¹³ C ₁₂ -PCB 126				93.4 ± 1.2	2.45	4.9 - 1500	0.997
PCB 156 ^d	32.85		¹³ C ₁₂ -PCB 169	<mdl< td=""><td>7.2 ± 2.0</td><td></td><td>88.0 ± 1.9</td><td>3.15</td><td>4.9 - 1500</td><td>0.999</td></mdl<>	7.2 ± 2.0		88.0 ± 1.9	3.15	4.9 - 1500	0.999
PCB 157 ^d	33.06		¹³ C ₁₂ -PCB 169	<mdl< td=""><td>1.59 ± 0.07</td><td></td><td>81.7 ± 3.1</td><td>3.37</td><td>4.9 - 1500</td><td>0.999</td></mdl<>	1.59 ± 0.07		81.7 ± 3.1	3.37	4.9 - 1500	0.999
PCB 180 ^d	33.58		¹³ C ₁₂ -PCB 169	111 ± 8	72.4 ± 1.0	53%	87.9 ± 1.6	2.67	4.9 - 1500	0.998
¹³ C ₁₂ -PCB 169	34.63		¹³ C ₁₂ -PCB 138				84.4 ± 6.2			
PCB 169	34.65		¹³ C ₁₂ -PCB 169				91.0 ± 1.2	1.80	4.9 - 1500	0.998
PCB 189 ^d	36.22	394,396,398	¹³ C ₁₂ -PCB 169	<mdl< td=""><td>1.6 ± 0.1</td><td></td><td>94.6 ± 2.4</td><td>2.05</td><td>4.9 - 1500</td><td>0.999</td></mdl<>	1.6 ± 0.1		94.6 ± 2.4	2.05	4.9 - 1500	0.999
			Histor	ic and Current Us	se Pesticides					
PeCB ^d	10.09	250,248,252	¹³ C ₆ -HCB	<mdl< td=""><td>61 ± 19</td><td></td><td>89.5 ± 2.4</td><td>11.9</td><td>4.9 - 750</td><td>0.972</td></mdl<>	61 ± 19		89.5 ± 2.4	11.9	4.9 - 750	0.972
d14-Trifluralin	13.64	349,348,350	¹³ C ₁₂ -PCB 138				52.0 ± 12.0			
Trifluralin	13.86	335,336	d14-Trifluralin	4.1 ± 2.2			89.9 ± 0.6	0.93	4.9 - 750	0.945
α-HCH ^d	14.62	71,73,70	¹³ С ₆ -б-НСН	<mdl< td=""><td>13.4 ± 2.1</td><td></td><td>89.1 ± 6.0</td><td>22.4</td><td>4.6 - 1400</td><td>0.999</td></mdl<>	13.4 ± 2.1		89.1 ± 6.0	22.4	4.6 - 1400	0.999
¹³ C ₆ -HCB	14.79	290,292,288	¹³ C ₁₂ -PCB 138				48.7 ± 10.2			
HCB ^d	14.79	284,286,282	¹³ C ₆ -HCB	<mdl< td=""><td>2.91 ± 0.67</td><td></td><td>93.0 ± 1.0</td><td>2.86</td><td>4.9 - 750</td><td>0.983</td></mdl<>	2.91 ± 0.67		93.0 ± 1.0	2.86	4.9 - 750	0.983
PCA	15.09	280,278,282	¹³ C ₆ -HCB				95.2 ± 1.3	3.48	4.9 - 750	0.963
PCNB	16.06	249,247,251	d ₁₄ -Trifluralin				103 ± 3	1.85	4.9 - 750	0.968
$\beta + \gamma - HCH^d$	16.29	71,73,70	¹³ С6-б-НСН	<mdl< td=""><td>3.1 ± 0.9</td><td></td><td>89.5 ± 5.4</td><td>15.3</td><td>4.6 - 1400</td><td>0.999</td></mdl<>	3.1 ± 0.9		89.5 ± 5.4	15.3	4.6 - 1400	0.999
Chlorothalonil	17.55	266,264,245	¹³ С6-б-НСН				95.4 ± 8.4	2.72	4.9 - 750	0.945
δ-НСН	17.89	255,257,253	¹³ С6-б-НСН				87.8 ± 3.3	4.56	4.6 - 1400	0.999
¹³ C ₆ -δ-HCH	17.89	263,261	¹³ C ₁₂ -PCB 138				56.1 ± 9.0			
Heptachlor	19.82	266,270,264	¹³ С6-б-НСН				84.3 ± 6.9	18.7	4.6 - 1400	0.998
Aldrin	21.55	237,239,330	¹³ С6-б-НСН				86.8 ± 8.7	19.4	4.6 - 720	0.996
Dacthal	21.88	332,330,334	¹³ С6-б-НСН	12.5 ± 2.2			98.1 ± 4.0	10.0	4.9 - 750	0.965
Heptachlor Epoxide	23.54	237,318,282	d4-Endosulfan I				73.7 ± 2.7	3.14	4.6 - 1400	0.990
Trans-chlordane ^d	24.73	410,408,412	d4-Endosulfan I	42.9 ± 1.2	50.7 ± 5.1	15%	83.0 ± 4.1	4.42	4.6 - 1400	0.990
d4-Endosulfan I	25.20	410,376,244	¹³ C ₁₂ -PCB 138				68.3 ± 13.0			
Endosulfan I	25.30	404,372,370	d4-Endosulfan I				94.9 ± 4.6	2.27	4.6 - 1400	0.992
Cis-chlordane ^d	25.47	444,446,442	d ₄ -Endosulfan I	N.D.	45.5 ± 8.1		88.4 ± 2.9	4.04	4.6 - 1400	0.998
Trans-nonachlor ^d	25.50	444,442,446	d4-Endosulfan I	22.5 ± 0.4	33.0 ± 3.5	32%	96.4 ± 3.5	3.66	4.9 - 1500	0.997
Dieldrin ^e	26.61	237,239,235	d4-Endosulfan I				81.1 ± 4.0	1.60	4.6 - 1400	0.991
Endrin	27.60	380,237,346	d4-Endosulfan II				98.0 ± 7.7	10.8	4.6 - 1400	0.999
d4-Endosulfan II	28.12	410,409,276	¹³ C ₁₂ -PCB 138				79.8 ± 8.2			
Endosulfan II	28.21	406,372,336	d ₄ -Endosulfan II				71.3 ± 1.7	3.14	4.6 - 1400	0.996
Cis-nonachlor ^d	28.45	444,446,334	d4-Endosulfan II	<mdl< td=""><td>12.7 ± 0.4</td><td></td><td>79.5 ± 1.6</td><td>2.90</td><td>4.2 - 650</td><td>0.968</td></mdl<>	12.7 ± 0.4		79.5 ± 1.6	2.90	4.2 - 650	0.968
Endrin Aldehyde	28.93	380,382,272	d4-Endosulfan II				84.3 ± 3.3	4.70	4.6 - 1400	0.999
Endosulfan Sulfate	30.07	386,388,422	d4-Endosulfan II				90.0 ± 5.6	6.68	4.6 - 1400	0.998
	20.07						> 0.0 = 0.0	0.00	1.0 1100	0.770

Endrin Ketone	32.24	308,310,306	d4-Endosulfan II				89.6 ± 4.2	3.36	4.6 - 1400	0.997
Bifenthrin	32.92	360,362,326	¹³ C ₁₂ -PCB 169				80.2 ± 2.6	1.39	4.9 - 1500	0.991
Mirex ^d	35.13	439,404,441	¹³ C ₁₂ -PCB 169	<mdl< td=""><td>1.30 ± 0.06</td><td></td><td>103 ± 3</td><td>14.8</td><td>5.1 - 780</td><td>0.947</td></mdl<>	1.30 ± 0.06		103 ± 3	14.8	5.1 - 780	0.947
λ -cyhalothrin	35.46	241,205,243	¹³ C ₁₂ -PCB 169				80.4 ± 1.5	2.68	4.9 - 1500	0.987
Deltamethrin ^a	43.37	79,81,297	¹³ C ₁₂ -PBDE 77				90.3 ± 3.0	3.26	4.9 - 1500	0.999
Cis-permethrin ^b	37.47	183,184,163	¹³ C ₆ -trans-permethrin				82.7 ± 11.2	11.3	34 - 2700	0.987
Trans-permethrin ^b	37.70	183,163	¹³ C ₆ -trans-permethrin				90.1 ± 2.4	7.83	8.7 - 2700	0.980
¹³ C ₆ -trans-permethrin ^b	37.70	189	d ₁₂ -BeP				85.0 ± 12.2			
				GC-EI-MS						
				sphate Flame Rei	ardants (OPFRs)					
TBP	19.80	99,211,155	d ₁₅ -TPP				88.7 ± 5.7	18.6	25 - 2800	0.999
d ₁₂ -TCEP	21.71	261,263,148	d ₁₂ -BeP				51.0 ± 10.2			
TCEP	21.90	249,143,99	d ₁₂ -TCEP				103 ± 4	23.8	25 - 2800	0.999
TCPP	22.55	125,99,157	d12-TCEP				87.5 ± 3.3	11.6	25 - 2800	0.999
TDCPP	30.83	191,99,379	d12-TCEP				116 ± 15	21.3	25 - 2800	0.998
d ₁₅ -TPP	31.61	341,340,243	d ₁₂ -BeP				50.0 ± 5.2			
TPP	31.73	326,215,169	d ₁₅ -TPP				121 ± 5	16.7	25 - 2800	0.999
TBEP	31.92	326, 83	d ₁₅ -TPP				91.0 ± 2.8	26.5	25 - 2800	0.999
TEHP	32.69	99,113	d ₁₅ -TPP				93.5 ± 14.3	6.36	25 - 2800	0.999
TOTP	34.21	368,277,165	d ₁₅ -TPP				90.6 ± 4.3	20.1	25 - 2800	0.990
ТРТР	36.08	368,261,107	d ₁₅ -TPP				120. ± 5	8.2	25 - 2800	0.999
T2IPPP	36.55	452,118,251	d ₁₅ -TPP				89.8 ± 3.8	13.8	25 - 2800	0.999
T35DMPP	37.61	410,194	d ₁₅ -TPP				112 ± 5	11.8	25 - 2800	0.999
			Polycyclic	Aromatic Hydro	carbons (PAHs)					
d ₁₀ -Flu	19.76	175,174,177	d ₁₂ -BeP				61.6 ± 11.5			
Flu ^d	19.85	165,166	d10-Flu	<mdl< td=""><td>222 ± 16</td><td></td><td>104 ± 4</td><td>10.4</td><td>8.6 - 2600</td><td>0.999</td></mdl<>	222 ± 16		104 ± 4	10.4	8.6 - 2600	0.999
d_{10} -PA	23.82	188,160	d ₁₂ -BeP				68.5 ± 13.8			
PA+Ant ^d	23.91	178,152,176	d10-PA	2283 ± 208	$4344\pm47^{\rm f}$	47%	99.6 ± 3.6	5.87	8.6 - 2600	0.997
Ant ^d		<mark>178,176,152</mark>	d ₁₀ -PA				92.8 ± 3.9			
d10-FL	28.66	212,208	d ₁₂ -BeP				76.5 ± 12.7			
FL^{d}	28.72	202,200,101	d_{10} -FL	4308 ± 652	6140 ± 120	30%	105 ± 5	5.17	8.6 - 2600	0.999
d10-Pyr	29.52	212,211,106	d ₁₂ -BeP				79.6 ± 12.1			
Pyr^d	29.57	202,201,101	d ₁₀ -Pyr	7404 ± 945	4784 ± 29	55%	101 ± 6	4.11	8.6 - 2600	0.999
d12-BaA+d12-CHR	34.65	240,237	d ₁₂ -BeP				92.9 ± 9.8			
BaA+CHR ^d	34.77	228,226,114	d12-BaA	7476 ± 940	$5100\pm65^{\rm f}$	47%	87.6 ± 8.6	3.58	8.6 - 2600	0.999
d ₁₂ -CHR		240,241,237	d ₁₂ -BeP				99.2 ± 11.2			
CHR ^d		228,227	d ₁₂ -CHR				107 ± 5			
d DaD										
d12-BaP	38.68	264,261,132	d ₁₂ -BeP				91.1 ± 7.8			

d12-BkF	38.80	265,132	d ₁₂ -BeP				91.9 ± 11.2			
BkF ^d	38.86	252,253,126	d12-BkF	1783 ± 472	1748 ± 83	2%	103 ± 11	10.8	8.6 - 2600	0.997
d12-BeP	39.63	264,265,261	-IS-							
d ₁₂ -BbF	39.84	264,132	d ₁₂ -BeP				78.4 ± 10.1			
BbF ^d	39.90	252,251,126	d ₁₂ -BbF	1397 ± 331	5990 ± 200	77%	87.2 ± 3.2	5.79	8.6 - 2600	0.998
d ₁₂ -IND	43.91	288,289,144	d ₁₂ -BeP				83.3 ± 7.3			
IND ^d	43.97	276,138,137	d ₁₂ -IND	1613 ± 215	2960 ± 170	46%	82.3 ± 3.5	5.19	8.6 - 2600	0.998
d ₁₄ -DBA	44.01	292,293,144	d ₁₂ -BeP	1015 ± 215	2700 ± 170		74.0 ± 7.2		0.0 - 2000	
DBA ^d	44.14	278,274,139	d ₁₄ -DBA	303 ± 56	290 ± 4	 5%	91.0 ± 7.5	5.12	8.6 - 2600	0.998
d ₁₂ -BghiP	44.75	288,285	d ₁₂ -BeP				90.0 ± 11.9			
BghiP ^d	44.81	276,274,138	d ₁₂ -BghiP	3208 ± 352	3937 ± 52	19%	91.3 ± 7.8	7.35	8.6 - 2600	0.999
2-MN ^g	13.30	142,115	d10-AcNap					69.9	250 - 5000	0.999
1-MN ^g	13.66	142,115	d10-AcNap					53.5	250 - 5000	0.999
2,6-DMN ^g	15.83	156,141	d10-AcNap					30.0	250 - 5000	0.999
d10-Acp ^g	<mark>17.44</mark>	164,162	-IS-							
9-MAnt ^g	26.87	192	d10-Pyr					23.7	250 - 5000	0.997
d10-Pyr ^g	29.48	212	-IS-							
RET ^{d,g}	30.90	219,234	d10-Pyr	1993 ± 444	251 ± 38	12%		15.3	125 - 2500	0.997
Bghi ^{Fg}	33.74	226	d12-BaA -IS-					42.2	50 - 1000	0.999
d12-BaA ^g	<mark>34.52</mark>	240		 331 ± 141		41%			 50 - 1000	0.992
CYC ^{d,g} BeP ^g	34.52 39.72	226 252	d12-BaA	551 ± 141	235 ± 60	41%		24.7 50.8	50 - 1000 50 - 1000	0.992
PER ^{d,g}	40.21	252	d12-BaA	276 ± 46	606 ± 13	54%		30.8 15.3	50 - 1000 50 - 1000	0.999
PER ³⁵ PIC ^{d,g}	40.21 44.10	232	d12-COR	270 ± 40 221 ± 49	390 ± 28	43%		15.5	50 - 1000 50 - 1000	0.999
d12-COR	50.11	312	-IS-	221 ± 49	590 ± 28	4370				
COR ^{d,g}	50.23	300,302	d12-COR	3678 ± 155	2830 ± 460	30%		16.8	50 - 1000	0.998
DBaeP ^{d,g}	50.23	300,302	d12-COR d12-COR	800 ± 329	538 ± 24	3%		10.8 0	30 = 1000 25 - 500	0.998
DBdel	50.54	500,502	u12-00K	Alkanes	550 ± 24	570		<u>v</u>	25 500	0.777
Undecane	6.29	57,71,85	d32-Pentadecane					492	625 - 12500	0.785
Dodecane	8.45	57,71,85	d32-Pentadecane					163	625 - 12500	0.797
Tridecane	10.78	57,71,85	d32-Pentadecane					406	625 - 12500	0.814
Tetradecane	15.48	57,71,85	d32-Pentadecane					561	625 - 12500	0.814
d32-Pentadecane	17.18	66,82,98	-IS-							
Pentadecane	17.68	57,71,85	d32-Pentadecane					399	625 - 12500	0.822
Hexadecane	19.77	57,71,85	d32-Pentadecane					310	625 - 12500	0.829
Heptadecane	21.76	57,71,85	d42-Eicosane					73.5	625 - 12500	0.994
Pristane	21.81	57,71,85	d42-Eicosane					<mark>879</mark>	625 - 12500	0.997
Octadecane	23.65	57,71,85	d42-Eicosane					35.6	625 - 12500	0.987
Phytane	23.74	57,71,85	d42-Eicosane					47.5	625 - 12500	0.995
Nonadecane	25.46	57,71,85	d42-Eicosane					368	625 - 12500	0.999
d42-Eicosane	26.62	66,82,98	-IS-							
Eicosane ^d	27.17	57,71,85	d42-Eicosane	1200 ± 890	1900 ^h	37%		94.0	625 - 12500	0.999
Heneicosane	28.79	57,71,85	d42-Eicosane					130	625 - 12500	0.998

Docosane ^d	30.37	57,71,85	d50-Tetracosane	2900 ± 130	5200 ^h	44%	64.6	625 - 12500	0.999
Tricosane ^d	31.85	57,71,85	d50-Tetracosane	6800 ± 370	16000 ^h	58%	102	625 - 12500	0.999
d50-Tetracosane	32.73	66,82,98	-IS-						
Tetracosane ^d	33.32	57,71,85	d50-Tetracosane	9500 ± 470	27000^{h}	65%	67.5	625 - 12500	0.999
Pentacosane ^d	34.68	57,71,85	d50-Tetracosane	68000 ± 2100	65000 ^h	5%	139	625 - 12500	0.999
Hexacosane ^d	36.01	57,71,85	d50-Tetracosane	67000 ± 2600	66000 ^h	2%	139	625 - 12500	0.999
Heptacosane ^d	37.30	57,71,85	d58-Triacontane	65000 ± 5200	62000 ^h	5%	342	625 - 12500	0.995
Octacosane ^d	38.53	57,71,85	d58-Triacontane	39000 ± 630	42000 ^h	7%	509	625 - 12500	0.997
Nonacosane ^d	39.72	57,71,85	d58-Triacontane	76000 ± 2400	58000 ^h	31%	491	625 - 12500	0.999
d58-Triacontane	40.24	66,82,98	-IS-						
Triacontane ^d	40.85	57,71,85	d58-Triacontane	24000 ± 1800	25000 ^h	4%	200	625 - 12500	0.998
Hentriacontane ^d	42.04	57,71,85	d66-Dotriacontane	46000 ± 3100	41000 ^h	12%	119	625 - 12500	0.999
d66-Dotriacontane	42.59	66,82,98	-IS-						
Dotriacontane ^d	43.39	57,71,85	d66-Dotriacontane	15000 ± 630	14000 ^h	7%	217	625 - 12500	0.994
Triatriacontane	44.75	57,71,85	d66-Dotriacontane				549	625 - 12500	0.984
Tetratriacontane	45.88	57,71,85	d74-Hexatriacontane				211	625 - 12500	0.998
Pentatriacontane	47.10	57,71,85	d74-Hexatriacontane				87.7	625 - 12500	0.996
d74-Hexatriacontane	47.53	66,82,98	-IS-						
Hexatriacontane	48.47	57,71,85	d74-Hexatriacontane				158	625 - 12500	0.994
Heptatriacontane	50.03	57,71,85	d74-Hexatriacontane				210	625 - 12500	0.992
Octatriacontane	51.83	57,71,85	d74-Hexatriacontane				303	625 - 12500	0.990
Nonatriacontane	53.95	57,71,85	d74-Hexatriacontane				392	625 - 12500	0.989
				Hopanes and Ster	anes				
$\alpha\beta\beta$ -20R-C ₂₇ -Cholestane	38.86	218,217	d4-Cholestane				11.9	25 - 500	0.999
ααα-20S-C ₂₇ -Cholestane	38.99	218,217	d4-Cholestane				16.8	25 - 500	0.996
d4-Cholestane	39.29	221	-IS-						
$\alpha\beta\beta$ -20R-Ergostane	40.18	218,217	d4-Cholestane				15.3	25 - 500	0.999
17α (H)-22,29,30- Trisnorhopane ^d	40.39	191	d4-Cholestane	2900 ± 330	2800 ^h	4%	<mark>54.0</mark>	25 - 500	0.999
$\alpha\beta\beta$ -20R-Sitosane	41.13	218,217	d4-Cholestane				16.8	25 - 500	0.981
17α(H)-21β(H)-30- Norhopane	41.91	191	d4-Cholestane				16.8	12.5 - 250	0.999
$17\alpha(H)-21\beta(H)$ -Hopane	43.04	191	d4-Cholestane				11.9	25 - 500	0.999
$17\alpha(H)-21\beta(H)-22S-$ Homohopane ^d	44.43	191	d4-Cholestane	11000 ± 1300	5400 ^h	104%	15.3	12.5 - 250	0.999

Data Collected

Fig 1. Compounds detected in the environmental samples included (a) CUPS/HUPS, (b) PCBs, (c) PAHs, (d) current and historicuse flame retardants (OPFRs and PBDEs), (e) alkanes, and (f) hopanes and steranes. Dark blue bars indicate the Manvel Croix (MC; suburban area south of Houston, TX) location, while the light blue indicates the Moody Tower (MT; downtown Houston, TX) location. * indicate that compounds were detected below MDLs and color indicates site. 75 of the 139 target analytes in Table 1 were detected.

Identify Problems or Issues Encountered and Proposed Solutions or Adjustments

NA

Goals and Anticipated Issues for the Succeeding Reporting Period

We intend to finalize filter preparation and shipment for inorganic ion analysis for Conroe in collaboration with 14-024.

We intend to prepare posters on organic analysis, spatio-temporal bulk carbon trends for presentation at AGU in December 2014. These will be submitted to AQRP for pre-approval prior to presentation.

Manuscript preparation for combined organic tracer and contaminant paper will continue in November.

Detailed Analysis of the Progress of the Task Order to Date

- Shared WSOC data for Conroe.
- Completed WSOC analysis for Conroe, Moody Tower, Manvel Croix and La Porte.
- Purchased and prepared standards for organic tracer analysis
- Began preliminary sample analysis for organic tracers and contaminants at Moody Tower and Manvel Croix.
- Validated method for organic tracers and contaminants using NIST SRMs 1649b and 2585.

Submitted to AQRP by: Principal Investigator: Rebecca J. Sheesley Rebecca J. Sheesley